

Priming Kanban 3Priming Kanban2

Biography: Jesper Boeg

Jesper has worked as an Agile and Lean coach
for more than 5 years and is now in charge of
the department for ”Agile Excellence” at Trifork.
He has a Masters degree from Aalborg Uni-
ǀĞƌƐŝƚǇ� ŝŶ� ƚŚĞ�ĂƌĞĂ�ŽĨ� /ŶĨŽƌŵĂƟŽŶ�^ǇƐƚĞŵƐ�ĂŶĚ�
wrote his thesis on how to successfully manage
ĚŝƐƚƌŝďƵƚĞĚ�ƐŽŌǁĂƌĞ�ƚĞĂŵƐ͘

:ĞƐƉĞƌ�ŚĞůƉƐ�ƚĞĂŵƐ�ĂŶĚ�ŽƌŐĂŶŝǌĂƟŽŶƐ�ĂĚŽƉƚ��Ő-
ile and Lean principles with a strong focus on
ƵŶĚĞƌƐƚĂŶĚŝŶŐ� ͞ǁŚǇ͘͟ � ,Ğ� ŚĂƐ� Ă� ƌĞƉƵƚĂƟŽŶ� ĨŽƌ�
ďĞŝŶŐ�ŚŽŶĞƐƚ�ĂŶĚ�ƐƚƌĂŝŐŚƚ� ĨŽƌǁĂƌĚ͕�ǁŝƚŚ�Ă�Įƌŵ�
believe that change management is much more
about people than process.

Jesper believes that trust is best established
ƚŚƌŽƵŐŚ�ĂŶ�ƵŶƌĞůĞŶƟŶŐ�ĨŽĐƵƐ�ŽŶ�ƚƌĂŶƐƉĂƌĞŶĐǇ�ŝŶ�
ƚŚĞ�ĞŶƟƌĞ�ŽƌŐĂŶŝǌĂƟŽŶ͘�,Ğ�ŚĂƐ�Ă�ƐƚƌŽŶŐ�ƉĂƐƐŝŽŶ�
ĨŽƌ�>ĞĂŶ�WƌŽĚƵĐƚ��ĞǀĞůŽƉŵĞŶƚ�ĂŶĚ�ĐŽŶƟŶƵŽƵƐ-
ůǇ�ĞŵƉŚĂƐŝǌĞƐ�ƚŚĂƚ�ŽŶĞ�ŵƵƐƚ�ůŽŽŬ�Ăƚ�ƚŚĞ�ĞŶƟƌĞ�
ƐŽŌǁĂƌĞ�ĚĞůŝǀĞƌǇ�ƐǇƐƚĞŵ�ƚŽ�ŐƵŝĚĞ�ƐƵĐĐĞƐƐ͘�

Context Based Strategically Aligned Agility are
keywords in Jesper’s work. It is his experience
ƚŚĂƚ�ƚŽ�ĐƌĞĂƚĞ�ůĂƐƟŶŐ�ĐŚĂŶŐĞ͕�ŽƌŐĂŶŝǌĂƟŽŶƐ�ĐĂŶ-
ŶŽƚ�ƌĞůǇ�ŽŶ��ĞƐƚ�WƌĂĐƟĐĞ�ƌƵůĞ�ƐĞƚƐ�ďƵƚ�ŵƵƐƚ�ƉƵƚ�
ĞīŽƌƚ� ŝŶƚŽ� � ƵŶĚĞƌƐƚĂŶĚŝŶŐ� ͞ǁŚǇ͟� ĂŶĚ� ĂůŝŐŶŝŶŐ�
Agile principles with the overall business strat-
egy. Otherwise they will quickly revert to former
ƉƌĂĐƟĐĞƐ�ǁŚĞŶ�ĨĂĐĞĚ�ǁŝƚŚ�ĚŝĸĐƵůƚǇ�ĂŶĚ�ƌĞƐƚƌŝĐƚ�
themselves from great improvement opportuni-
ƟĞƐ͘�

Jesper regularly speaks at Agile and Lean confer-
ences. He is member of the GOTO Aarhus Pro-
gram Advisory Board and has served as track-
host on numerous GOTO and QCon conferences.

A 10 step guide to optimizing flow in your software delivery system
PRIMING KANBAN

JESPER BOEG

Priming Kanban 5Priming Kanban4

tƌŝƩĞŶ�ďǇ�:ĞƐƉĞƌ��ŽĞŐ
&ŽƌĞǁŽƌĚ�ďǇ�:ĂŵĞƐ�^ƵƩŽŶ
Designed by Cecilie Marie Skov
Graphics by Cecilie Marie Skov and Jesper Boeg

&ŝƌƐƚ�ĞĚŝƟŽŶ͕�KĐƚŽďĞƌ�ϮϬϭϭ
&ŝƌƐƚ�ƉƌŝŶƟŶŐ
WƌŝŶƚĞĚ�ŝŶ��ĞŶŵĂƌŬ�Ăƚ��ŚƌŽŶŽŐƌĂĮƐŬ��ͬ^

dƌŝĨŽƌŬ��ͬ^
�ĂƌŚƵƐ͗�DĂƌŐƌĞƚŚĞƉůĂĚƐĞŶ�ϰ͕��<ͲϴϬϬϬ��ĂƌŚƵƐ����
�ŽƉĞŶŚĂŐĞŶ͗�^ƉŽƚŽƌŶŽ��ůůĞ�ϰ͕��<ͲϮϲϯϬ�dĂĂƐƚƌƵƉ
Phone +45 8732 8787
E-mail: info@trifork.com

Thanks to everybody that helped review this mini-book.
The readability and the content have been greatly im-
proved as a result of your comments. A special thanks
to Yuval Yeret, Karl Scotland and James Sutton for your
insightful comments and taking the time to review the
book in such detail.

Priming Kanban 7Priming Kanban6

Foreword, James Sutton...

Introduction...

Background...

When should I consider working with Kanban?..

What is Kanban?..

How do we get started with Kanban?..

Where can Kanban be used?...

Kanban Myths...

Step 1: Visualize your workflow..

Understanding your software delivery system..

Visualizing your system...

Step 2: Limit Work in Progress (WIP)..

Understanding WIP..

Visualizing WIP Limits...

Finding the right WIP limits...

Step 3: Set Up Quality Assurance Policies and Make Them Explicit.................................

Understanding quality...

Visualizing policies..

Step 4: Adjust Cadences...

Understanding Cadence..

Finding the right cadences...

Step 5: Measure Flow...

Understanding Metrics...

What to measure?...

Cumulative flow diagrams (CFD)...

Reading the CFD...

Cycle time...

Defect rate...

Blocked Items...

8

10

11

12

13

15

16

16

20

21

22

25

26

27

30

32

33

34

37

38

40

41

42

43

43

44

45

46

48

C o n t e n t s
Step 6: Prioritize..

Cost of Delay (COD)..

Visualizing Priority...

Step 7: Identify Classes of Service..

Types of work...

Define Classes of Service..

Visualizing Classes of Service..

Step 8: Manage Flow...

Decision filters..

Optimize flow not utilization..

Relieve bottlenecks..

Introduce buffers..

Release planning..

Experiment...

Step 9: Establish Service Level Agreements (SLA)..

Establishing the right Service Level Agreements...

Step 10: Focus on Continuous Improvement..

Good luck on your journey...

53

54

55

58

59

60

61

65

66

67

68

69

69

71

73

74

77

79

Priming Kanban 9Priming Kanban8

F o r e w o r d b y J a m e s S u t t o n
Kanban is an industrial technique for “pulling” work through its entire life-
cycle, causing the work to flow more smoothly and at a higher rate. Kanban
also shines a light on the activities that are normally hidden. This visibility is
at two levels; for individual activities, and also over the lifecycle as a whole.

For many decades factory production has enjoyed the benefits of kanban:
higher productivity, better quality, and more-satisfied workers who enjoyed
increased insights into and control over their work. Until recently, howe-
ver, nobody had figured out how the ideas of kanban might translate into a
knowledge work field like software development. It wasn’t even clear if it
would help in such fields.

/Ŷ�ƚŚĞ�ϮϬϬϬƐ͕��ĂǀŝĚ��ŶĚĞƌƐŽŶ�ǁŽƌŬĞĚ�ŽƵƚ�ƚŚĞ�ZŽƐĞƚƚĂ�^ƚŽŶĞ�ĨŽƌ�ƐƵĐŚ�Ă�
translation, and developed the ideas of Kanban into an approach well-suited
ĨŽƌ�ƐŽĨƚǁĂƌĞ�ĚĞǀĞůŽƉŵĞŶƚ͘�,ŝƐ�ϮϬϭϬ�ďŽŽŬ�͞<ĂŶďĂŶ͟�ƉĂŝŶƚĞĚ�ƚŚĞ�ƉŝĐƚƵƌĞ�Ăƚ͕�
say, VGA-resolution. It set an entire industry experimenting with the Kanban
approach in many different product types and situations. They found that
Kanban works with any development lifecycle, from Scrum to Waterfall. It
complements rather than competes with them.

Anderson’s book left two things still wanting, however: An additional level of
detail in the theory and practice of knowledge-work Kanban, and a “starter’s
guide” for people about to take plunge.

The additional needed level of detail is in an upcoming book by David Ander-
son. You could say that it will be at HD-resolution for display on a big screen
TV (I’ve talked to David some about the book).

The other piece of the puzzle, the “starter’s guide,” is what you are about
to read: Jesper Boeg’s mini-book “Priming Kanban.” Call it an iPhone video-
podcast with which to follow along wherever you do your own work. A great
complement to the big HD picture.

When I recently received a draft of Jesper’s book for review, I didn’t think
it possible for such a small book to contain both a concise overview and a
practical, step-by-step worker’s introduction. As I read along, though, I reali-

zed that Jesper had succeeded at both.
He has a unique gift for getting to the core of a matter, and then helping
others get to the core of it for themselves.

I heartily recommend “Priming Kanban” as a practitioner’s quick-start intro-
duction to using Kanban. It will enable you to try out Kanban more quickly
and painlessly…and defuse your anxiety about doing so. On a broader scale,
as it inspires many people to take the same plunge, our industry will expand
the use of this newest tool in our toolkit, Kanban…with all the benefits it
brings.

And that’s good for all of us.

CEO, The Jubata Group
President, Lean Software & Systems Consortium
^ŚŝŶŐŽ�WƌŝǌĞ͕�ϮϬϬϳ
INCOSE ESEP

James Sutton�

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

/ŶƚƌŽĚƵĐƟŽŶ��| Priming Kanban 11Priming KanbanϭϬ

I n t r o d u c t i o n

Background
Before we dive into the step-by-step guide to implementing Kanban let us
spend a few minutes introducing the concept so you will be able to re-
cognize where each step fits into the overall Kanban change management
framework. The scope of this mini book is not to describe Kanban concepts
in depth, for that I refer to David J. Andersons excellent book Kanban, which
I strongly recommend reading:

http://www.amazon.com/Kanban-Successful-Evolutionary-Technology-Busi-
ness/dp/0984521402/ref=sr_1_1?ie=UTF8&qid=1313588404&sr=8-1

Instead I hope to give a short introduction followed by step-by-step advice
on how to get started.

Kanban or more precisely “Kanban system for software development” repre-
sents a more direct implementation of Lean Product Development principles
in software development compared to traditional Agile methods. With a
consistent focus on flow and context, Kanban offers a less prescriptive ap-
proach to Agile and has become a popular extension to traditional methods
like Scrum and XP.

The word Kanban is Japanese and means “Visual Card”. The reason that
Google returns more than 5 million results on a search for Kanban is howe-
ver that it also used to describe the system that has been used at Toyota for
decades to visually control and balance the production line and has become
almost synonymous with implementation of Lean principles. So while Kan-
ďĂŶ�ŝƐ�Ă�ƌĞůĂƚŝǀĞůǇ�ŶĞǁ�ĐŽŶĐĞƉƚ�ŝŶ�/d͕�ŝƚ�ŚĂƐ�ďĞĞŶ�ƵƐĞĚ�ĨŽƌ�ŵŽƌĞ�ƚŚĂŶ�ϱϬ�ǇĞĂƌƐ�
in Lean production systems at Toyota.

The use of Kanban in software is pioneered by David Anderson, who in close
collaboration with Don Reinertsen, has strived to expand the knowledge
of Lean and the use of Kanban to visualize and optimize the workflow in IT
development, maintenance and operations.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

/ŶƚƌŽĚƵĐƟŽŶ��| Priming Kanban 13 Priming Kanban |��/ŶƚƌŽĚƵĐƟŽŶ12

When should I consider working with
Kanban?
If the answer is yes to one or more of the following questions there is a good
chance you will benefit from reading the rest of this book:

ͻ� ,ĂǀĞ�ǇŽƵ�ďĞĞŶ�ƐƚƌƵŐŐůŝŶŐ�ǁŝƚŚ�ŝŵƉůĞŵĞŶƚŝŶŐ��ŐŝůĞ�ŝŶ�ǇŽƵƌ�
 organization for a while without much success?

ͻ� ,ĂǀĞ�ǇŽƵ�ďĞĞŶ�ƵƐŝŶŐ��ŐŝůĞ�ĨŽƌ�Ă�ǁŚŝůĞ�ĂŶĚ�ƉĞƌĨŽƌŵĂŶĐĞ�� �
 improvements have started to level off?

ͻ� �ƌĞ�ǇŽƵ�ƵƐŝŶŐ�ǀĂůƵĂďůĞ�ƚŝŵĞ�ŽŶ��ŐŝůĞ�ƉƌĂĐƚŝĐĞƐ�ƚŚĂƚ�ŶŽ�ůŽŶŐĞƌ�
 seems to fit the context you are working in?

ͻ� ,ĂǀĞ�ǇŽƵ�ďĞĞŶ�ƵƐŝŶŐ��ŐŝůĞ�ĂƐ�Ă�ĐŚĞĐŬůŝƐƚ�ǁŝƚŚŽƵƚ�ĨƵůůǇ�
 understanding the underlying principles?

ͻ� �Ž�ǇŽƵ�ŚĂǀĞ�Ă�ŶĞĞĚ�ĨŽƌ�ŵŽƌĞ�ĨůĞǆŝďŝůŝƚǇ�ƚŚĂŶ�ĨƌŽǌĞŶ͕�ĐŽŵŵŝƚƚĞĚ�ĂŶĚ��
 planned iterations have to offer?

ͻ� �Ž�ǇŽƵƌ�ƉƌŝŽƌŝƚŝĞƐ�ƐŚŝĨƚ�ŽŶ�Ă�ĚĂŝůǇ�ďĂƐŝƐ͍

ͻ� �ƌĞ�ǇŽƵ�ƵƐŝŶŐ�ƉƌŽĐĞƐƐĞƐ�ĚĞƐŝŐŶĞĚ�ĨŽƌ��ŐŝůĞ�ƉƌŽĚƵĐƚ�ĚĞǀĞůŽƉŵĞŶƚ�ŝŶ�
 a context where they are not an easy fit, e.g. maintenance and
 operations?

ͻ� �Ž�ǇŽƵ�ŶĞĞĚ�Ă�ŐƌĂĚƵĂů�ƚƌĂŶƐŝƚŝŽŶ�ĨƌŽŵ�ǁĂƚĞƌĨĂůů�ƚǇƉĞ�ĞǆĞĐƵƚŝŽŶ�ƚŽ��
 Agile to avoid high levels of organizational resistance?

No matter if your goal is to work in a strict Scrum context, if you are using
waterfall or trying to find a way to super optimize your current Agile imple-
mentation, most will benefit from the deeper understanding of Lean that
Kanban has proven to be an excellent catalyst for.

What is Kanban?
There are a variety of approaches to Kanban but most agree that Kanban is a
change management method focusing on the following principles:

ͻ� Visualize Work
 - Visualize every step in your value chain from vague
 concept to releasable software.

ͻ� Limit Work-In-Progress (WIP)
 - Set explicit limits on the amount of work allowed in each
 stage

ͻ� Make Policies Explicit
 - Make the policies you are acting according to explicit

ͻ� Measure and Manage Flow
 - Measure and Manage Flow to make informed decisions
 and visualize consequence

ͻ� Identify Improvement Opportunities
 - Create a Kaizen culture where continuous improvement is
 everyone’s job.

Those of you familiar with Lean will recognize many of these principles as the
foundation for a Lean pull system and what Kanban first and foremost does
is actually serve as a catalyst to introduce Lean ideas into software delivery
systems. This is also stated in David’s book:

 ”...Kanban (capital K) is the evolutionary change method that utilizes
 a kanban (small k) pull system, visualization, and other tools to
 catalyze the introduction of Lean ideas into technology
 development and IT operations”
� � � � � �ĂǀŝĚ�:͘��ŶĚĞƌƐŽŶ͕�<ĂŶďĂŶ�ϮϬϭϬ

We will show a lot of examples of Kanban boards in the following chapters
and explain the mechanics but to give you an idea of the concept figure 1
shows an example.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

/ŶƚƌŽĚƵĐƟŽŶ��| Priming Kanban 15 Priming Kanban |��/ŶƚƌŽĚƵĐƟŽŶ14

Fig. 1 Kanban Principles in Action

As you can see all work is made visible. WIP limits are in place (written in
each column header). Policies are made explicit and flow is measured. As you
will notice the last column does not have a WIP limit assigned. This is due
to the fact that this particular team has opted for a regular weakly release
cadence (3 pm Tuesday) which means that all finished work is released at
this time.

Kanban is all about driving evolutionary change and these simple steps have
proven extremely helpful in doing that. The reason we refer to such a system
as a “Kanban Pull System” is that visualized flow and WIP limits ensure that
you can never introduce more work into the system than it has capacity to
handle. There is only a certain number of work permits (kanbans) available
so you must complete existing work before new work can be started. This
results in functionality being pulled through the system based on capacity
rather than pushed based on forecasts or demand.

How do we get started with Kanban?
,ŽƉĞĨƵůůǇ�ƚŚĞ�ϭϬ�ƐƚĞƉƐ�ŝŶ�ƚŚŝƐ�ďŽŽŬ�ǁŝůů�ŐĞƚ�ǇŽƵ�ǁĞůů�ŽŶ�ǇŽƵƌ�ǁĂǇ�ďƵƚ�ďĞĨŽƌĞ�
we get that far it is important to understand that Kanban has a different ap-
proach to change management than most other Agile methods.

Kanban is built on the concept of evolutionary change. Start by understan-
ding how your current software delivery system works. When you have
managed to visualize, measure and manage your flow improve it one step at
the time by relieving the largest bottleneck. This is quite different compared
to e.g. Scrum where you will often start out by redefining roles, process and
artifacts. This makes Kanban ideally fitted for use on top of existing proces-
ses which can be anything from Scrum to Waterfall and perfect in situations
where organizational structures inhibits radical change.

In Lean terms, this means that Kanban is primarily build on the concept of
Kaizen (continuous improvement) and only uses Kaikaku (dramatic change) in
special situations where structural change is needed or serious performance
leverage need to be identified.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

/ŶƚƌŽĚƵĐƟŽŶ��| Priming Kanban 17 Priming Kanban |��/ŶƚƌŽĚƵĐƟŽŶ16

Where can Kanban be used?
Now we are almost ready to get started. But before we dive into the imple-
mentation details let us just quickly bust some of the myths about Kanban to
make sure the following sections are read with the right mindset in place.
At Trifork we have helped a lot of companies and teams increase their
effectiveness by adopting Kanban. At first it seemed the primary target
group were teams working with maintenance and operation, but Kanban
has proven to be just as helpful for software development. Also teams and
organizations working with waterfall-like methods have found the evolutio-
nary approach extraordinarily helpful in a gradual transition to Agile product
development.

Kanban Myths
ͻ� Myth: Kanban is only suitable for teams working with small uniform
 tasks like those seen in operation and maintenance.
ͻ� Fact: Kanban is heavily inspired by Don Reinertsen’s work with Lean
 Product Development and has proven to be as good as fit to
 software development as it is for operation and maintenance.

Fig. 2 Kanban Takes an Evolutionary Approach to Process Optimization

ͻ� Myth: Kanban and Scrum are opposites.
ͻ� Fact: None of the principles in Kanban restricts you from doing
 Scrum. Kanban acts as a change agent and the principles in Scrum
 should therefore only be used in cases where they help optimize
 flow. Nothing is keeping you from starting with Scrum and using
 Kanban to drive further change – many projects have been
 incredibly successful with this strategy. Some might even argue that
 it was the original intention with Scrum as well but somehow it got
 lost in the focus on ceremonies, roles and artifacts.

ͻ� Myth: By not insisting on planned committed iterations Kanban falls
 prey to Parkinson’s Law that “Work expands so as to fill the time
 available for its completion”.
ͻ� Fact: Though being a valid concern Kanban projects rarely display
 this behavior since fixed cadences, extreme visualization, cycle time
 measurement and tighter feedback loops with business keep focus
 tight and work items flowing.

ͻ� Myth: Kanban teams do not use timeboxes.
ͻ� Fact: Timeboxes are not mandatory, but should be used when they
 help optimize flow, feedback and quality. Most Kanban teams use
 fixed but decoupled cadences of planning, review and releases and
 thereby dispense with the traditional iteration model while keeping
 the value intact.

ͻ� Myth: Kanban teams do not estimate.
ͻ� Fact: Estimates are not mandatory, but should be used when
 appropriate. Most Kanban development projects use some degree
 of initial sizing to ensure optimal portfolio management,
 prioritization and alignment or use estimates for work that is more
� ƐĞŶƐŝƚŝǀĞ�ƚŽ�ĐŽƐƚͬďĞŶĞĨŝƚ�ĂŶĂůǇƐŝƐ�Žƌ�ĚƵĞ�ĚĂƚĞ�ƉĞƌĨŽƌŵĂŶĐĞ͘

ͻ� Myth:�<ĂŶďĂŶ�ŝƐ�ďĞƚƚĞƌ�ƚŚĂŶ�^ĐƌƵŵͬyWͬ�ƌǇƐƚĂůͬ&��͙͘
ͻ� Fact: Kanban is first and foremost a catalyst for driving change and
 therefore needs a starting point. So while most projects will benefit
 from using Kanban it is not a substitute for e.g. Scrum. Scrum is in
 most cases a perfect starting point when adopting Kanban.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

/ŶƚƌŽĚƵĐƟŽŶ��| Priming Kanban 19 Priming Kanban |��/ŶƚƌŽĚƵĐƟŽŶ18

Though the Kanban community is constantly fighting these and other myths,
still Kanban remains one of the most misunderstood concepts in the Agile
community to this date for two main reasons:

A lot of the noise and confusion revolves around the fact that Kanban is a
change method and therefore has very few descriptive parts telling you
how to work, which roles to fill etc. Since the concept of a change method is
poorly understood, people have tried to compare it to prescriptive methods
like Scrum and XP.

Local examples and emergent behaviors of Kanban, in real world projects,
have come to represent a “Kanban method” to some people. It is easy to
see why people misunderstand since many Kanban projects show the same
emergent practices. Reality however is that Kanban is about using Lean prin-
ciples to optimize existing processes in an evolutionary way, and therefore
cannot and should not be compared to Scrum, XP, Crystal, FDD or whatever
method you are using.

The second reason is arguably that the word “Kanban” might carry too much
baggage from its origins in Lean production systems to be an adequate word
to describe a change method for software development and IT operations.
Though kanban pull systems, as they are used in production systems, do
drive change, Kanban in software builds on a much broader set of Lean
principles and that creates a difficult mental gap for those having worked
extensively with Lean in the past. Toyota does however use improvement
Katas which guides the usage of tools like Kanban in order to continuously
improve performance.

The good news is that most projects, Agile or non Agile, can benefit hugely
from using the principles of Kanban to drive change and continuous improve-
ment which I hope to demonstrate in this book.

The observant reader might have noticed that the title of this book is not
exactly in line with the Kanban principles. As David Anderson wrote in a
ƚǁĞĞƚ�:ƵŶĞ�ϯϬ͘�ϮϬϭϭ�͙͞�<ĂŶďĂŶ�ƐǇƐƚĞŵ�ĚĞƐŝŐŶ�ŝƐ�Ă�ƚŚŝŶŬŝŶŐ�ƉƌŽĐĞƐƐ�ŶŽƚ�Ă�
copying or template implementing process”. However, those familiar with
the “Dreyfus Model of Skill Acquisition” will recognize that whenever ac-
quiring a new skill you need prescriptions at first and my hope is that this
“primer” will help you transition quicker and more painlessly. The important

thing is to know that prescriptions only serve as a way for you to gain know-
ledge to move forward and not as an endpoint or a checklist to be followed
ďůŝŶĚůǇ͘�dŚĞ�ƚĞŵƉůĂƚĞƐ�ĂŶĚ�ƉƌĂĐƚŝĐĞƐ�ƐƵŐŐĞƐƚĞĚ�ŝŶ�ƚŚĞ�ϭϬ�ƐƚĞƉƐ�ŝŶ�ƚŚŝƐ�ďŽŽŬ�
are emergent behaviors experienced in Kanban projects and not the Kanban
change method itself.

Now that we have got the general picture lets go on to how we can apply
these things in practice. Each step consists of a short explanation about
“why” followed by “how”.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

^ƚĞƉ�ϭ͗�sŝƐƵĂůŝǌĞ�ǇŽƵƌ�ǁŽƌŬŇŽǁ��| Priming Kanban 21Priming KanbanϮϬ

S t e p 1
V i s u a l i ze yo u r

w o r k f l o w

First step towards visualizing your workflow is to understand how your cur-
rentsystem works.

Understanding your software delivery
system
To be able to make informed decisions about how to best optimize your
workflow the first step is to understand what you are doing. The important
thing here is to resist the temptation to change anything. Just find out how
you are working without idealizing it. The key is to try to map your entire
software delivery workflow and not just focus on the “development” part.

There a number of different ways to do this. The most popular way is to use
the Lean concept of Value Stream Maps (VSM). Recently VSMs have taken
quite a beating from Agile and other knowledge work communities, the main
argument being that knowledge work is not a linear process like the ones
seen in production systems. This has led to the evolvement of techniques
like Knowledge Creation Networks better suited to handle non linear
work. For this simple example we will however use the more simple VSM
technique which I still find extraordinary helpful but you should explore the
option that fits your context.

In its simplest form a Value Stream Map is a visualization of the stages our
work passes through from raw material to finished product or in the case of
software from vague idea to a feature working in production. The key thing
when doing this for knowledge work is to think of each stage as the primary
form of information arrival. For example, a stage called “Test” includes
more work than just testing (fixing, refactoring, discussions, updating accept
criteria etc.) but since the primary form of information arrival is “Test” we
will define our work as being in the “Test” stage while all these activities are
going on. The space between our stages, where no information is being ad-
ded is defined as “wait time”. Figure 3 shows an example from a real project.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

^ƚĞƉ�ϭ͗�sŝƐƵĂůŝǌĞ�ǇŽƵƌ�ǁŽƌŬŇŽǁ��| Priming Kanban 23Priming Kanban |��^ƚĞƉ�ϭ͗�sŝƐƵĂůŝǌĞ�ǇŽƵƌ�ǁŽƌŬŇŽǁ22

We might later decide that implementation actually consists of: User story
breakdown, Development and Code Review, but let’s stick with this simple
version for now. Already improvement ideas spring into our mind: Why is
there an average wait time of 5 months from specification to implementati-
on? Why are we waiting 2 weeks before testing? Resists the temptation to fix
these issues right now – there will be plenty of time for that later and right
now our focus is on understanding how our current system works.

Initially it is a good idea to limit the number of stages in the value stream
map and kanban board. With too many stages in place you quickly lose sight
of the big picture and focus on the mechanics. Later on you might find it
beneficial to add more details but keep it simple for now.

Visualizing your system
Now that we have gained a better understanding of our software delivery
system the next step is to try to visualize it. We can do this in an electronic
system or simply using a whiteboard. Unless you are working in a distributed
team it is usually a good idea to start out with just the whiteboard, nothing
makes your work more visible than having it right in front of you all the time
and being able to physically touch it. As team maturity increases and you
find the need to collect more data you might want to move to an electronic
version but stick to the whiteboard for now.

Often you will end up with at least two types of stages: “Activity” stages
where active work is being performed and “Buffer” stages where work is
ǁĂŝƚŝŶŐ�ƚŽ�ďĞ�ƌĞůĞĂƐĞĚͬĚĞǀĞůŽƉĞĚ�ĞƚĐ͘�ďƵƚ�ŵŽƌĞ�ŽŶ�ƚŚĂƚ�ůĂƚĞƌ͘

Fig. 3 Value Stream Map Example

Fig. 4 Activity Stage vs. Buffer Stage

Martien van Steenbergen

Priming Kanban 25Priming Kanban |��^ƚĞƉ�ϭ͗�sŝƐƵĂůŝǌĞ�ǇŽƵƌ�ǁŽƌŬŇŽǁ24

The first version of your board might look something like the one shown in
figure 4 (Notice that all the work necessary to complete a given feature is
represented, not just development)

Every feature starts out as a vague idea in the PO Inbox and ends up in the
“Releasing” column where it is removed from when the feature is actually
working in production. Notice that we haven’t changed anything - you might
still be following a strict Scrum implementation.

If visualizing your work proves a difficult task now is the place to stop. Don’t
go any further before you have managed to visualize all the work you do. If
information is hidden and some tasks are completed outside your workflow
system there is little chance that you will ever be able to make informed
decisions about how best to optimize. A general rule is “you can only mange
the work you can see”. Visualizing work may sound deceptively simple but
can prove difficult in real life. Reasons may be many: People know they are
doing things they shouldn’t. They are afraid they will be punished if their
superiors know how things really work. Though stressed out they feel they
will let their colleagues down if they are not constantly firefighting. You need
to fix these problems and make everybody involved understand that no
one will be blamed or discredited for displaying the current status, before
moving on.

Visualizing your workflow gives a number of benefits the most important
being:

Focus on “The Whole”
ͻ� /ƚ�ďĞĐŽŵĞƐ�ǀŝƐŝďůĞ�ĞǆĂĐƚůǇ�ŚŽǁ�ǇŽƵƌ�ǁŽƌŬ�ĂĨĨĞĐƚƐ�ŽƚŚĞƌƐ�ĂŶĚ�
 vice versa

Transparency
ͻ� �ǀĞƌǇďŽĚǇ�ŬŶŽǁƐ�ĞǆĂĐƚůǇ�ǁŚĂƚ�ŝƐ�ŐŽŝŶŐ�ŽŶ�ĂŶĚ�ŶŽ�ŝŶĨŽƌŵĂƚŝŽŶ�ŝƐ�
 hidden

Identifying waste
ͻ� zŽƵ�ŶĂƚƵƌĂůůǇ�ƐƚĂƌƚ�ƚŽ�ƋƵĞƐƚŝŽŶ�ǁŚǇ�ǇŽƵ�ĂƌĞ�ĚŽŝŶŐ�ƚŚŝŶŐƐ�ƚŚĞ�ǁĂǇ��
 you are(more on that later)

Step 2
Limit Work in

Progress (WIP)

Martien van Steenbergen

Step 2: Limit Work in Progress (WIP) | Priming Kanban 27Priming Kanban | Step 2: Limit Work in Progress (WIP)26

When you have managed to visualize your workflow and spent a few weeks
observing your system you are ready to proceed to the next step - limiting
WIP. Though it might be tempting to do this immediately, visualizing work is
often not as easy as it seems and therefore it is often a good idea to spend
some time exploring this aspect before continuing on.

Understanding WIP
To understand why, limiting WIP makes sense, we need to take a look at
Little’s law which states that (adapted to product development terminology):
�ǇĐůĞ�ƚŝŵĞ�с�t/W�ͬ�dŚƌŽƵŐŚƉƵƚ�ƉĞƌ�ƵŶŝƚ�ŽĨ�ƚŝŵĞ

Cycle Time describes the time it takes for a work item to pass through our
system or in other words “the time it takes from a feature is selected for
implementation until it is working in production”. How you define “selected
for implementation” depends on your context. For some it is the placement
of an item on the backlog and for others it might be the time an item is se-
lected for detailed specification. You might also want to distinguish between
the two and refer to the time an item arrives until it is delivered as “Lead
Time” and the time from it is selected for implementation until it is delivered
as “Cycle Time”.

WIP describes the amount of Work In Progress in our system. How many
͞ƐƚŽƌǇ�ƉŽŝŶƚƐͬ͟ ͟ƵƐĞƌ�ƐƚŽƌŝĞƐͬ͟ ͟ďĂĐŬůŽŐ�ŝƚĞŵƐ͟�ĂƌĞ�ĐƵƌƌĞŶƚůǇ�ŝŶ�ƉƌŽŐƌĞƐƐ�ŝŶ�ŽƵƌ�
system. Again it depends on the context. Some include all items on the back-
log in WIP while others consider only the items selected for implementation.

Throughput per unit of time is simply the average number of items produced
in a given period of time. In Scrum this is usually referred to as velocity.

dŚŝƐ�ŵĞĂŶƐ�ƚŚĂƚ�ŐŝǀĞŶ�Ă�ƐǇƐƚĞŵ�ǁŝƚŚ�ϭϬϬ�ƵƐĞƌ�ƐƚŽƌŝĞƐ�ŝŶ�ƉƌŽŐƌĞƐƐ�;t/WͿ�ĂŶĚ�
Ă�ƚŚƌŽƵŐŚƉƵƚ�ŽĨ�Ϯ�ƵƐĞƌ�ƐƚŽƌŝĞƐ�ƉĞƌ�ǁĞĞŬ�ƚŚĞ�ĂǀĞƌĂŐĞ�ĐǇĐůĞ�ƚŝŵĞ�ŝƐ�ϭϬϬͬϮ�с�
ϱϬ�ǁĞĞŬƐ�Žƌ�ĂůŵŽƐƚ�Ă�ǇĞĂƌ͘ �ZĞĚƵĐŝŶŐ�ƚŚŝƐ�ƚŽ�Ϯϱ�ǁĞĞŬƐ�ĐĂŶ�ďĞ�ĚŽŶĞ�ďǇ�ĞŝƚŚĞƌ�
doubling throughput to 4 user stories per week or reducing the number
ŽĨ�ƵƐĞƌ�ƐƚŽƌŝĞƐ�ŝŶ�ƉƌŽŐƌĞƐƐ�ƚŽ�ϱϬ͘�/Ŷ�ŵŽƐƚ�ĐĂƐĞƐ�ŝƚ�ŝƐ�ŝŶŝƚŝĂůůǇ�ŵƵĐŚ�ĞĂƐŝĞƌ�ƚŽ�
reduce WIP than doubling throughput.

As you might have guessed limiting WIP is all about reducing cycle time
to increase flow and minimize the amount of work we have invested time
and resources in, but has yet to generate any business value. Fast feedback
cycles are also a great way to minimize risk, since decisions are validated
continuously and quality issues are exposed immediately. A subject explored
ŝŶ�ĚĞƚĂŝů�ŝŶ��ĂƉĞƌƐ�:ŽŶĞƐ��ŽƐƚ�ŽĨ�YƵĂůŝƚǇ�;ϭϵϴϬͿ͘��Ƶƚ�ǁŚǇ�ŶŽƚ�ũƵƐƚ�ŝŶĐƌĞĂƐĞ�
throughput you might ask? The simple answer, I will ask you to accept for
now is that it is often many times easier to limit WIP than increase through-
put.

So how do we do this? Well actually all we have to do initially is to make
our best effort to define how many items we will allow in each stage of our
board at any given time. A good idea is to let this exercise be guided by the
policies your team would like to enforce. If the team decides that it is a good
idea that no developer should work on a user story single handedly you
might choose a limit of 3 for a team of 6. Note that this is only true for activi-
ty columns like “development”, “test” etc. For buffer columns like “ready for
development” the general rule is that if it is empty once a year the WIP limit
is too large (364 days you are working with a larger buffer than needed) and
if it is empty once a day it is too small. People often joke that the universal
WIP limit is 5 so if in doubt 5 is probably a good number to start with.

Visualizing WIP Limits
How you visualize your limit is up to you. Figure 5 and 6 show two common
ways of doing it. In figure 5, only one item may be placed in a box and that
ŐŝǀĞƐ�ǇŽƵ�Ă�ǀĞƌǇ�ǀŝƐƵĂů�ƐŝŐŶĂů�ǁŚĞŶ�ǇŽƵ�ŚĂǀĞ�Ă�͞ƉĞƌŵŝƚ͟�ƚŽ�ƐƚĂƌƚͬƉƵůů�ŶĞǁ�
work (the box is empty). In figure 6, it is easier to divide the activity stage in
“in progress” and “done” since the WIP limit is simply written in each column
header. This can give you additional insight into how your system is working
and is the common way of doing it in IT. People having worked with Lean
manufacturing might opt for the first version since in more closely resembles
the visual pull signal of the plastic card.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 2: Limit Work in Progress (WIP) | Priming Kanban 29Priming Kanban | Step 2: Limit Work in Progress (WIP)28

Fig. 5 WIP Limits Visualized Using Containers Fig. 6 WIP Limits Visualized Using Numbers in Column Headers

Step 2: Limit Work in Progress (WIP) | Priming Kanban 31Priming Kanban | Step 2: Limit Work in Progress (WIP)ϯϬ

Finding the right WIP limits
There are many schools of thought in terms of how tight you should set you
WIP limits initially and it is out of scope for this mini-book to cover the sub-
ject in detail. One way is to observe your system and set the limits just loose
enough for your current workflow to continue unhindered. Then identify
your bottleneck and adjust one limit at the time. A more radical approach
is to set your limits on activity columns tighter than you expect your system
to be able to handle and buffer each stage. Then you observe where work
builds up and gradually loosen until work flows through the system. Both re-
quire some experience and do not expect to get it right the first time. There
is no final conclusion as to which one is better, but setting the limits with
your policies in mind seems to work in both circumstances.

In any circumstance it is important to set an explicit policy of how the
decision to break or change the limit will be made. To maximize learning it
is a good idea to make such decisions together as a team. This ensures that
everybody get to voice their opinion and understand the decision. This is not
just a matter of flow but also a learning point!

Always remember that your initial limits are just best guesses, given at a pla-
ce in time where you had the least amount of information available. As you
gain more information about your system, limits should be adjusted conti-
nuously as you find the more optimal ways of working. If you are still working
with your initial limits and the same stages 3 months after you started, there
is a good chance that you have missed the most important step in this guide,
namely the continuous improvement step we will cover in more detail later.
Limits that are too tight will block the flow and make people idle for too long
or simply be ignored without serious discussion, while limits that are too
large will increase cycle time and make work items idle for too long.

What you will quickly notice is that with WIP limits in place your system can
only work to capacity. You need to finish work to get a permission to start a
new thing. While sounding trivial it is the core concept of a Lean pull sche-
duling system and an incredible powerful tool on your journey to a more
effective, sustainable and predictable software delivery system. A popular
metaphor is to think of the system as a chain of paper clips.

As long as you are pulling it across the table they follow a nice line but if you
push it instead they all crumble together in a mess, each item blocking the
rest. (Illustrated in figure 7)

You will also quickly notice a certain pain that happens when you don’t get
permission to start a new thing while you think that is “the right thing” to
do. This is a sign that you are discovering an impediment to flow – and the
most important thing is not to be ”Comfortably Numb” about the pain but to
leverage it for improvement.

Fig. 7 Pull vs. Push

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 3: Set Up Quality Assurance Policies and Make Them Explicit | Priming Kanban 33Priming Kanban32

Step 3
Set Up Quality

Assurance
Policies and Make

Them Explicit

If you are familiar with Lean you might have come across the term “Quality
built in”. Why is quality so important you might ask? Isn’t the main thing that
we fix the bugs that find their way into production? The simple answer is that
quality issues are much more expensive than you think.

Understanding quality
Whether it is a user that cannot complete a task because the system lacks
an intuitive interface or it is a bug that blocks the workflow. They are both
quality problems and they both stress our system and generate a whole
loop of waste. This is better known as “failure demand” in Lean systems and
describes all activities and rework related to the product not being designed
properly in the first place. Sometimes it is acceptable since releasing the
software to get real feedback was the cheapest way to buy information. It
might also be the case that finding this bug up front would have cost us a
lot more time and money than fixing it afterwards. In the majority of cases
however it is simply caused by an immature process.

So why is it so expensive? Let’s look at a couple of common scenarios in
software development:

A user (Let’s call him John) cannot complete his task because of a bug in our
system. John writes a bug report or calls first level support to address the
problem. John however knows little about what it takes for a developer to
be able to investigate the issue or maybe the first level supporter does not
know the system as well as he should. In both cases, wrong or inadequate in-
formation is given to the developer who ends up solving a different problem
(which might not actually be a problem but instead leads to another bug) or
simply give up. This continues until finally the bug is solved. However, not
only were John not able to complete his task, faulty information was actu-
ally saved to the database which now needs a complicated SQL script to be
reverted to a meaningful state. It is not uncommon for situations like this to
ŽĐĐƵƌ�ĂŶĚ�Ă�ĨĂĐƚŽƌ�ŽĨ�ϭϬϬͲϭϬϬϬ�ƚŝŵĞ�ĂŶĚ�ƌĞƐŽƵƌĐĞƐ�ƐƉĞŶƚ�ĐŽŵƉĂƌĞĚ�ƚŽ�ŚĂǀŝŶŐ�
spent the time not introducing the bug in the first place.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 3: Set Up Quality Assurance Policies and Make Them Explicit | Priming Kanban 35Priming Kanban | Step 3: Set Up Quality Assurance Policies and Make Them Explicit34

cannot remember the complicated problem we were working on and have to
spend an extra half an hour getting back into the context.

For these reasons Lean puts a huge emphasis on fail proofing the delivery
system (Poka Yoke). In production systems, Poka Yoke is done by using
standards and checklists that must be followed when completing a task.
Even photocells are used to register whether a specific screwdriver is used
the correct number of times or all parts needed have been removed from
the stack. This might sound like an inhumane environment to work in but ac-
tually workers in Lean production systems do not see themselves as robots
blindly following standards and checklists. They see themselves as expert
operators that are constantly trying to improve the system they are working
in by coming up with new ideas as to how it can be improved. In the “The
�ůĞŐĂŶƚ�^ŽůƵƚŝŽŶ͗�dŽǇŽƚĂ͛Ɛ�&ŽƌŵƵůĂ�ĨŽƌ�DĂƐƚĞƌŝŶŐ�/ŶŶŽǀĂƚŝŽŶ͕�ϮϬϬϲ͟�DĂƚƚŚĞǁ�
E. May refers to this fact as the main reason Toyota still manages to IMPLE-
MENT one million new improvements every year.

Visualizing policies
So how does this translate to software development? Well actually you are
half way there. You have already visualized your work on the board and put
WIP limits in place. All you need to do now is add the policies you are already
using to ensure quality and consistency. Doing this, your board might end up
looking like the one shown in figure 8.

Fig. 8 Explicit Policies Visualized on Board

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Priming Kanban 37Priming Kanban | Step 3: Set Up Quality Assurance Policies and Make Them Explicit36

Note that entire stages may be QA policies and that policies also serve to
ensure consistency and quality in the process itself (e.g. tracking cycle time
and defect rate). All of it traces back to the third Kanban principle “making
policies explicit”.

Many teams have taken fail proofing to extraordinary levels in recent years
and have implemented systems that were unthinkable just a few years ago.
The “Lean Startup Movement” has shown that it is possible to deploy soft-
ware to production several times a day without down time or high defect
rates. This can only work because they have put unit, integration, regres-
sion and performance test in place that help validate the code as well as
Key Performance Indicators that signal an alarm whenever the system is not
behaving as expected and automatically rolls back to the previous versions.
This makes it impossible to introduce whole classes of errors.

Always keep in mind that you should never feel that you are slaves to your
policies and checklists. You are an expert knowledge worker constantly
observing and trying to improve the system you are working in, not a robot.
^ƚĂƌƚ�ďǇ�ĂĚĚŝŶŐ�ƚŚĞ�ƉƌŽĐĞĚƵƌĞƐ�ǇŽƵ�ĂƌĞ�ƵƐŝŶŐ�Ăƚ�ƚŚĞ�ƉƌĞƐĞŶƚ�ƚŝŵĞ�ĂŶĚ�ĂĚĚͬ
ƌĞŵŽǀĞͬĐŚĂŶŐĞ�ƚŚĞŵ�ǁŚĞŶ�ǇŽƵ�ĚŝƐĐŽǀĞƌ�ŶĞǁ�ĂŶĚ�ďĞƚƚĞƌ�ǁĂǇƐ�ŽĨ�ĞŶƐƵƌŝŶŐ�
quality. Every bug is a chance to reflect on how it managed to get into your
system.

Initially, the thought of reflecting and learning from each and every bug will
seem daunting. With time, as quality improves, it will however become more
and more natural. This is a price worth paying and is referred to as ”Zero
Tolerance” in Agile Testing circles.

Step 4
Adjust Cadences

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Priming Kanban | Step 4: Adjust Cadences 39Priming Kanban | Step 4: Adjust Cadences38

Once you have managed to visualize your flow, limit WIP and establish QA
policies one of the first things you should evaluate are your cadences. In a
typical software delivery system a number of activities benefit from regular
cadences and finding the right one for each type is paramount to increasing
flow. Note that in a Kanban system we are not obligated to synchronize eve-
rything to the lowest common denominator. We can adjust the cadence of
each activity to its own optimal level. Typical cadences we need to consider
are planning (input) cadence and delivery (output) cadence. A lot of other
ĐĂĚĞŶĐĞƐ�ůŝŬĞ�ƌĞǀŝĞǁͬƌĞƚƌŽƐƉĞĐƚŝǀĞ�ĐĂĚĞŶĐĞ�ĂŶĚ�ƋƵĂůŝƚǇ�ĂƐƐƵƌĂŶĐĞ�ĐĂĚĞŶĐĞ�
(if you are not a true Agile project-) of course also exist but let us stick to
planning and delivery for now.

Understanding Cadence
Finding the right delivery cadence is one of the most important things in
Lean product development since it helps you optimize essential feedback
loops, reduce risk and optimize your delivery process.

Though releasing every feature directly to production is the most optimal
solution (given that you have a system optimized to handle this) in reality
most projects work with two delivery cadences.

ͻ� KŶĞ�ĐĂĚĞŶĐĞ�ǁŚĞƌĞ�ĐŽĚĞ�ŝƐ�ĚĞƉůŽǇĞĚ�ƚŽ�Ă�ƉƌĞƉƌŽĚƵĐƚŝŽŶ�ƐǇƐƚĞŵ�ƚŽ��
 obtain initial feedback (internal release cadence)

ͻ� KŶĞ�ĐĂĚĞŶĐĞ�ǁŚĞƌĞ�ƚŚĞ�ŶĞǁ�ǀĞƌƐŝŽŶ�ŝƐ�ĚĞƉůŽǇĞĚ�ƚŽ�ƚŚĞ�ĂĐƚƵĂů�
 production environment (external release cadence)

Especially on “Greenfield” projects these two cadences can be very far
apart. It may take 5 month before the system is feature complete enough
to hit production while code is being deployed and tested every day on the
preproduction environment.

The important thing when choosing the right internal and external release
cadence is to be aware of the economic cost of your choice. There is always
a transaction cost (the cost of moving your version from one environment to
another) associated with a release and there is always a holding cost
associated with waiting. The balance between these two describes the

optimal cadence which is visualized in figure 9 from Don Reinertsen’s book
on Lean Product Development Flow (used with permission).

The more features you bundle together in a release, the cheaper the cost
per feature (lower transaction cost), but also a higher holding cost since each
feature will have to wait longer getting deployed resulting in loss of business
value, outdated feedback, uninformed decisions and lower user involve-
ment.

Holding costs are slightly different for external and internal releases. Since
an internal release does not expose any real business value to customers,
holding costs represent only outdated feedback, uninformed decisions and
ĚĞĐƌĞĂƐĞĚ�ƵƐĞƌͬďƵƐŝŶĞƐƐ�ŵŽƚŝǀĂƚŝŽŶ�ĚƵĞ�ƚŽ�ůŽǁ�ŝŶǀŽůǀĞŵĞŶƚ͘���ŶǇŽŶĞ�ŚĂǀŝŶŐ�
worked in a real business context will however recognize that these can be
as detrimental as lost revenue.

As you can see from the figure the “total cost” u-curve has a pretty flat
“bottom”. Therefore it does not really matter if you hit the optimal release
ĐĂĚĞŶĐĞ͘��ĞŝŶŐ�ϭϬ�Žƌ�ϭϱ�ƉĞƌĐĞŶƚ�ŽĨĨ�ǁŝůů�Ɛƚŝůů�ŐĞŶĞƌĂƚĞ�Ă�ŐŽŽĚ�ƌĞƐƵůƚ͘

Fig. 9 Batch Size Optimization

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Priming Kanban 41Priming Kanban | Step 4: Adjust CadencesϰϬ

Finding the right cadences
The problem is that many projects do not even consider this very carefully.
Many mature Agile teams are able to release to preproduction environments
with the click of a button, but still they wait a full 3 weeks before getting
feedback on a given feature from users. When transaction costs can be mea-
sured in single dollars you should strongly consider working with very small
batch sizes. Sometimes this is problematic since users are not available but
in most cases it has simply not been considered.

Another key consideration, that Toyota taught us, is that transaction costs
are not fixed. The continuous deployment movement has shown us that
ŝƚ�ŝƐ�ƉŽƐƐŝďůĞ�ƚŽ�ĚĞůŝǀĞƌ�ƌĞůŝĂďůĞ�ǀĞƌƐŝŽŶƐ�ƚŽ�ƉƌŽĚƵĐƚŝŽŶ�ϱϬ�ƚŝŵĞƐ�Ă�ĚĂǇ�ĨŽƌ�
systems handling millions of dollars. This can only be done by having a fully
automated deployment procedure and a whole suite of unit, integration
and regression tests, which is of course an investment but does allow you to
work in batch sizes of a few lines of code.

Adjusting the planning cadence should be done with similar considerations.
When the time between planning meetings gets longer, more stuff have to
be planned in one large batch. This results in more design in progress and
less informed decisions due to longer cycle time. On the other hand, meeting
everyday might prove too large of an overhead and raise transaction costs.
In some cases Kanban teams choose to plan on demand instead. This can be
done be sending an email to stakeholders whenever e.g. 3 slots are empty
in the input queue and arranging a meeting or a conference call to fill them
with the highest priorities. Usually “on demand” planning is reserved for
more advanced teams and requires some prior experience handling flow. So
consider carefully if this is should be your initial strategy.

Step 5
Measure Flow

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 5: Measure Flow | Priming Kanban 43Priming Kanban | Step 5: Measure Flow42

Measuring software development projects and their progress is unfortu-
nately one of the most misunderstood and misapplied aspects of software
development we come across. Often metrics are used to hold project ma-
nagers accountable for aspects they had no control over in the first place or
as fixed success criteria established when people knew the least about the
system to be developed.

Understanding Metrics
When discussing metrics I find one ground rule should always be remem-
bered “your software delivery system only has a certain capacity”. If you
try to press your system beyond its capacity it will lead to lower quality,
unsustainable pace, higher maintenance costs or all of the above. But still,
time and time again we see project managers almost bragging that they
have made their teams work overtime for 3 months or that by some heroic
effort they fixed things at the last moment when everything was total chaos.
Though we should celebrate great achievements software development
projects do not need fixers, they need people that are able to deliver with
transparency and a healthy sustainable pace. Everything else is simply too
expensive. I like Kent Beck’s statement that “if you have a problem that re-
quires more than one week of overtime you have a problem that should not
be fixed by working overtime anyway”.

You may of course increase your capacity over time by hiring more people
(beware of doing that for short term results) or optimizing your process.
Another good ground rule to consider here is that “your system never has
more capacity than it has PROVEN to be able to deliver”. Following this
simple rule will also keep you from managing projects by the anti pattern
of “wishful thinking and other people’s successes”. Starting on a Greenfield
project, your capacity and capability will of course be informed guesses from
previous performance and the key here is to track progress from the begin-
ning to validate those assumptions. More on that topic in step 8.

So think of your plan as a tool for alignment, not a success criterion, and
measure your flow to determine whether you are still aligned. What we
want is our software delivery system to be stable and predictable so we can
make informed decisions about deadlines, dependencies, staffing, scope and
budget.

What to measure?
So how do you measure flow? There are dozens of ways to do this and the
main thing to consider is always “will I act on this piece of information”. If
you are not going to change anything based on a chosen metric chances are
that you shouldn’t be measuring it at all. If you have no idea where to start,
I suggest starting with the following four: Cumulative Flow Diagram, Cycle
Time, Defect Rate and Blocked Items.

Cumulative flow diagrams (CFD)

Cumulative flow diagrams seem to be replacing burn down charts for more
ŵĂƚƵƌĞ��ŐŝůĞ�ƚĞĂŵƐ�ĂŶĚ�ŽƌŐĂŶŝǌĂƚŝŽŶƐ�ĨŽƌ�ŐŽŽĚ�ƌĞĂƐŽŶƐ͘�dŚĞǇ�ĂƌĞ�ĞĂƐǇͬĞĂƐŝĞƌ�
to update and give you better insight into the project’s status. For those un-
familiar with the concept of CFD’s, they simply display the current amount of
work in your system for each stage over time. While this may sound simpli-
stic it provides you with the same kind of information as the traditional burn
ĚŽǁŶ�ĐŚĂƌƚ�ƉůƵƐ�Ă�ůŽƚ�ŵŽƌĞ͘�&ŝŐƵƌĞ�ϭϬ�ƐŚŽǁƐ�ĂŶ�ĞǆĂŵƉůĞ�ŽĨ�Ă��&�͘

&ŝŐ͘�ϭϬ��ƵŵƵůĂƚŝǀĞ�&ůŽǁ��ŝĂŐƌĂŵ��ǆĂŵƉůĞ

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 5: Measure Flow | Priming Kanban 45Priming Kanban | Step 5: Measure Flow44

Reading the CFD
The gradient of the “done” area describes your velocity over time while the
space between this line and the “backlog” line may be defined as WIP.

ͻ� /Ĩ�ƚŚĞ�ǁŝĚƚŚ͕�ŽĨ�Ă�ƉĂƌƚ�ŽĨ�ƚŚĞ�t/W�ĂƌĞĂ͕�ŝŶĐƌĞĂƐĞ͕�ŝƚ�ĐŽƵůĚ�ďĞ�Ă�ƐŝŐŶ��
 that a bottleneck is occurring.

ͻ� /Ĩ�ƚŚĞ�ŐƌĂĚŝĞŶƚ�ŽĨ�ƚŚĞ�͞ďĂĐŬůŽŐ͟�ĂƌĞĂ�ŝƐ�ƐƚĞĞƉĞƌ�ƚŚĂŶ�ƚŚĞ�ŐƌĂĚŝĞŶƚ�ŽĨ�
 the “done” area it is a clear sign that you are adding more work to
 your system than your current capacity.

ͻ� WƌŽũĞĐƚŝŶŐ�ǁŚĞƌĞ�ƚŚĞ�ŐƌĂĚŝĞŶƚƐ�ŽĨ�͞ďĂĐŬůŽŐ͟�ĂŶĚ�͞ĚŽŶĞ͟�ĐƌŽƐƐ�ŝƐ��
 your current best guess of a final release date.

ͻ� �ǀĞƌĂŐĞ��ǇĐůĞ�ƚŝŵĞ�ĂŶĚ�YƵĂŶƚŝƚǇ�ŝŶ�ƋƵĞƵĞ�ĐĂŶ�ĂůƐŽ�ďĞ�ĞƐƚĂďůŝƐŚĞĚ��
 from the diagram.

Learning to read a CFD is easy and figure 11 from Don Reinertsen’s book
(used with permission) gives an excellent visual representation. Black area
equals WIP.

Fig. 11 How to Read a Cumulative Flow Diagram

Cycle time
Though your Cumulative Flow Diagram will tell you the average cycle time,
tracking individual cycle times can be very helpful in terms of predictability.

Averages can be misleading and a visual representation will give you detailed
information about the reliability of your system as well as the opportunity to
meet customer demands more accurately (something we will cover in more
detail in step 9).

Tracking Cycle Time is even easier than updating the CFD. All you have to do
is register the date work started on an item (remember to make this policy
explicit as well). When work has finished you plot the number of days it took
to complete and your diagram should look something like the one shown in
figure 12.

Fig. 12 Cycle Time Diagram Example

Step 5: Measure Flow | Priming Kanban 47Priming Kanban | Step 5: Measure Flow46

Though simple a cycle time diagram tells you a lot about how your system is
working.

ͻ� �Ž�ǇŽƵ�ŚĂǀĞ�Ă�ŚŝŐŚ�ůĞǀĞů�ŽĨ�ĐŽŶƐŝƐƚĞŶĐǇ�Žƌ�ĂƌĞ�ƚŚĞ�ŶƵŵďĞƌƐ�ĨĂƌ��
 apart?

ͻ� /Ɛ�ƚŚĞ�ƚƌĞŶĚ�ŐŽŝŶŐ�ŝŶ�ƚŚĞ�ƌŝŐŚƚ�ĚŝƌĞĐƚŝŽŶ͍�

ͻ� ��ĐŚĂŶĐĞ�ƚŽ�ŝŶǀĞƐƚŝŐĂƚĞ�ŽƵƚůŝĞƌƐ�;ƉŽƐŝƚŝǀĞ�ĂŶĚ�ŶĞŐĂƚŝǀĞͿ͘

ͻ� dŚĞ�ĐŽŶƐĞƋƵĞŶĐĞ�ŽĨ�ĚĞĐŝƐŝŽŶƐ�;ůĂƌŐĞ�ƚĂƐŬƐ͕�ĨŝƌĞĨŝŐŚƚŝŶŐ͕�ƋƵĂůŝƚǇ��
 issues…)

/Ĩ�ϵϬ�ƉĞƌĐĞŶƚ�ŽĨ�ǁŽƌŬ�ŝƚĞŵƐ�ƚĂŬĞ�ƵŶĚĞƌ�Ă�ǁĞĞŬ�ǇŽƵ�ŵŝŐŚƚ�ǁĂŶƚ�ƚŽ�ƚĞůů�ǇŽƵƌ�
ĐƵƐƚŽŵĞƌ�ƚŚĂƚ�ƚŚĞǇ�ĐĂŶ�ĞǆƉĞĐƚ�ƚŚĂƚ�ϵ�ŽƵƚ�ŽĨ�ϭϬ�ƚŝŵĞƐ�ǁŽƌŬ�ǁŝůů�ďĞ�ĐŽŵƉůĞƚĞĚ�
within a week.

Defect rate
As previously mentioned, quality issues are incredible expensive and there-
fore you want to keep them under a watchful eye. Tracking the defect rate
and the total number of bugs in your system is an easy way of making sure
that quality problems do not get out of hand.

Surprisingly few organizations use defect rates as a KPI (Key Performance
Indicator) despite the fact that it does tell you a lot about the status of you
project:

ͻ� tŚǇ�ŝƐ�ƚŚĞ�ŶƵŵďĞƌ�ŽĨ�ŶĞǁ�ĚĞĨĞĐƚƐ�ŝŶĐƌĞĂƐŝŶŐ͍��ŝĚ�ǇŽƵ�ƌĞůĂǆ�ƐŽŵĞ��
 QA policies?

ͻ� ,Žǁ�ĚŝĚ�ƚŚĞ�ŚŝŐŚ�ůĞǀĞů�ŽĨ�ďƵŐƐ�ŝŶ�ǁĞĞŬ�ϮϬ�ĂĨĨĞĐƚ�ĐǇĐůĞ�ƚŝŵĞ͍

ͻ� tŚĂƚ�ǁĂƐ�ƚŚĞ�ŝŵƉĂĐƚ�ŽŶ�ƚŚĞ�ĐƵŵƵůĂƚŝǀĞ�ĨůŽǁ�ĚŝĂŐƌĂŵ�ǁŚĞŶ�ƚŚĞ��
 number of bugs increased?

As usual, always be careful not to make too many conclusions based on
individual data sets. A bad week might just be a coincidence. Look at trends
to see if you are moving in the right direction. Figure 13 shows an example of
a defect rate diagram.

<ĞĞƉŝŶŐ�ƚŚĞ�ƚŽƚĂů�ŶƵŵďĞƌ�ŽĨ�ďƵŐƐ�ďĞƚǁĞĞŶ�Ϭ�ĂŶĚ�ϮϬ�ŝƐ�Ă�ŐŽŽĚ�ƉŽůŝĐǇ�ĨŽƌ�
most projects. Once the list gets bigger than that it gets hard to administer
and you have to spend time checking for double entries, outdated issues
and things that have already been fixed. People also seem to get nervous

Fig. 13 Defect Rate Diagram Example

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 5: Measure Flow | Priming Kanban 49Priming Kanban | Step 5: Measure Flow48

ĂŶĚ�ĚĞŵĂŶĚ�ŵŽƌĞ�ƌĞƉŽƌƚƐ�ĂŶĚ�ƚƌĂĐŬŝŶŐ�ŽŶĐĞ�ƚŚĞ�ůŝƐƚ�ĂƉƉƌŽĂĐŚĞƐ�ϱϬ�Žƌ�ϭϬϬ�
and before you know it there are bug management boards and weekly bug
meetings stealing your valuable time. Even cosmetic bugs require attention
ĂŶĚ�ƚĂŬĞ�ƚŝŵĞ�ƚŽ�ĂĚŵŝŶŝƐƚĞƌ�ƐŽ�ĚŽŶ͛ƚ�ĨĂůů�ŝŶƚŽ�ƚŚĞ�ƚƌĂƉ�ŽĨ�ĂůůŽǁŝŶŐ�ϱϬ�ŽĨ�ƚŚĞŵ�
either. Choose a policy and stick to it.

Blocked Items
By now I hope that you are convinced that flow is important for our systems
ability to act predictable and for the individual processes to operate effec-
tively. Most people working in both Agile and non Agile contexts will have
experienced items being blocked for longer or shorter periods of time and
for various reasons. Though this will show up on our CFD and eventually our
Cycle Time diagram (if the item makes it through the system) most teams
find it beneficial to explicitly and visually track the teams ability to handle
and fix issues blocking one or more features in the system. Some compa-
nies even use this as the leading Key Performance Indicator (KPI), since they
recognize that blocked items have serious long term effects on the systems
and that a team’s ability to quickly solve issues says a lot about the team’s
performance and effectiveness. Blocked items should always be visible on
the board and tracking the status over time is usually a good way of kno-
wing whether the team is moving in the right direction. Figure 14 shows an
example of a blocked items.

The standard way of visualizing blocked items on the board is simply to
attach a pink sticker to a particular feature, with the blocking issue and the
date it became blocked written on it. Figure 15 shows a board where a pink
sticker marks a blocked item.

Fig. 14 Blocked Items Diagram Example

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 5: Measure Flow | Priming Kanban 51Priming Kanban | Step 5: Measure FlowϱϬ

Fig. 15 Blocked Item Visualized with Pink Sticker

Try to avoid having a particular place on the board for blocked items. Since
this place is not part of the actual workflow there is a tendency that people
grow numb to these issues and they end up having their own little cor-
ner where they rarely get attention (before someone turns up yelling and
screaming, wanting to know why it was not finished two month ago)

Four diagrams, next to the board, is often the limit as to how much informa-
tion most people are able to process before they simply “drown” in it and
start to care less. It is however important that these things are posted visibly
and keeping them hidden on a separate sheet in an electronic system will
rarely get much attention. Figure 16 shows the four diagrams, covered in this
chapter, on top of a the board.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Priming Kanban 53Priming Kanban | Step 5: Measure Flow52

Fig. 16 Flow Metrics Visualized on top of Board

Step 6
Prioritize

^ƚĞƉ�ϲ͗�WƌŝŽƌŝƟǌĞ��| Priming Kanban 55Priming Kanban|�^ƚĞƉ�ϲ͗�WƌŝŽƌŝƟǌĞ54

It may come as a surprise to someone that we are down to step number
6 before starting to deal with pulling things in the right order. The reason
however is quite clear. In his book “Kanban” David Anderson states that if
you don’t have a working software delivery system, able to deliver reliably
and with quality, your prioritization matters little. In this case you should
probably spend your time fixing the problem of not being able to deliver
first. This is of course context dependent and in Greenfield projects you
might want to consider this earlier on. In any case, there is no reason to stop
your current way of prioritizing work so keep doing that and consider using
the following strategies when you are ready to use a more Lean way of ap-
proaching prioritization.

So how do we prioritize our work the best way possible? In step 7 we will
look at how different types of work should be handled differently but for
now we will stick to the prioritization of one type of work e.g. “user stories”.

Cost of Delay (COD)
The default principle is Cost of Delay (COD) and again Don Reinertsen is by
large responsible for introducing this principle to IT. COD describes the reve-
nue or expected cost saving lost by choosing NOT to work on a given item.
Your highest priority should be the item with the highest COD. In reality COD
will often be weighted by Cost of Implementation (COI), deadlines, time and
other factors. It is out of scope for this book to explain the full concept of
COD. For now all you need to do is wrap you head around the concept of lost
opportunities and that every time you choose to work on something you are
choosing to block something else. Calculating exact COD is almost never pos-
sible in product development so often we will have to do with our current
best guess. A good guess is however much better than no guess at all and
learning to place economic value on your work is a maturing exercise for all
projects and organizations.

Visualizing Priority
To make sure that we pick the right item to work on our input queue should
always be prioritized and new work pulled from the top. This rule applies no
matter if you are working with Scrum, planning a batch of work for the next
sprint, or with flow-based approach continuously pulling the highest priority
when a work permit exists. Figure 17 shows an example.

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

^ƚĞƉ�ϲ͗�WƌŝŽƌŝƟǌĞ��| Priming Kanban 57Priming Kanban|�^ƚĞƉ�ϲ͗�WƌŝŽƌŝƟǌĞ56

Fig. 17 Prioritization Policies Visualized on the Board

Other important prioritization factors, which should also be included in the
final rank, include:

ͻ� ZŝƐŬ�ĂŶĚ�ƵŶĐĞƌƚĂŝŶƚǇ͘��ƵǇ�ŝŶĨŽƌŵĂƚŝŽŶ�ĞĂƌůǇ�ĨŽƌ�ŚŝŐŚ�ƌŝƐŬ�ŚŝŐŚ�ŝŵƉĂĐƚ��
 decisions

ͻ� �ĂƌĞ�ŶĞĐĞƐƐŝƚŝĞƐ͗�WƌŽũĞĐƚ�ŝŶĨƌĂƐƚƌƵĐƚƵƌĞ�ĞƚĐ͘

ͻ� �ĂůĂŶĐĞ�ƐŝǌĞ͗�Dŝǆ�ƐƚŽƌǇ�ƐŝǌĞ�ƚŽ�ŬĞĞƉ�Ă�ƐƚĞĂĚǇ�ĨůŽǁ͘

ͻ� �ĂůĂŶĐĞ�ƐƚŽƌǇ�ƚǇƉĞƐ͗�Dŝǆ�ĨƵŶĐƚŝŽŶĂůͬŶŽŶͲĨƵŶĐƚŝŽŶĂů�ƐƚŽƌŝĞƐ�ƚŽ�ĞŶƐƵƌĞ��
 a steady flow of value.

ͻ� �ĞƉĞŶĚĞŶĐŝĞƐ͗�,ĂŶĚůĞ�ĚĞƉĞŶĚĞŶĐŝĞƐ�ƉƌŽĂĐƚŝǀĞůǇ�ƐŽ�ƚŚĂƚ�ǁŽƌŬ�ĚŽĞƐ��
 not get stuck.

If you are working with a traditional backlog or a waterfall like requirement
ƐƉĞĐŝĨŝĐĂƚŝŽŶ�ĐŽŶƚĂŝŶŝŶŐ�ϱϬн�ŝƚĞŵƐ͕��ƉĞŽƉůĞ�ŶĂƚƵƌĂůůǇ�ƐƚĂƌƚ�ƚŽ�ƋƵĞƐƚŝŽŶ�ŚŽǁ�
much of it to visualize on the board. There is no general rule, some teams
find it helpful visualizing the entire input queue will others keep the list in
Ă�ƐĞƉĂƌĂƚĞ�ƉůĂĐĞͬƚŽŽů�ĂŶĚ�ŐƌĂĚƵĂůůǇ�ƉƵůů�ƚŚĞ�Ğ͘Ő͘�ϱ�ŵŽƐƚ�ŝŵƉŽƌƚĂŶƚ�ŝƚĞŵƐ�ŽŶ�
the board. Keeping an explicit WIP limit on the input queue is however a very
good idea to keep it from spinning out of control. I usually compare a back-
log to an unused top floor of a house. If you put everything up there you are
reluctant to throw out you have very little chance of finding the few things
you actually need when you need them. So keep the backlog clean and make
sure it is not growing out of control.

Martien van Steenbergen

^ƚĞƉ�ϳ͗�/ĚĞŶƟĨǇ��ůĂƐƐĞƐ�ŽĨ�^ĞƌǀŝĐĞ��| Priming Kanban 59Priming Kanban58

Step 7
Identify Classes

of Service

Not everyone is created equal and the same goes for the way we deal with
different types of work in software development. Few would question that
ĂŶ�ŝƐƐƵĞ�ƌĞƐƵůƚŝŶŐ�ŝŶ�ϭϬ͘ϬϬϬ�ƵƐĞƌƐ�ďĞŝŶŐ�ƵŶĂďůĞ�ƚŽ�ĂĐĐĞƐƐ�ƚŚĞ�ƐǇƐƚĞŵ�ĂŶĚ�ĐŽ-
ƐƚŝŶŐ�ΨϭϬϬ͘ϬϬϬ�ŝŶ�ƌĞǀĞŶƵĞ�ƉĞƌ�ŚŽƵƌ�ĚĞƐĞƌǀĞƐ�ƐƉĞĐŝĂů�ƚƌĞĂƚŵĞŶƚ�ĐŽŵƉĂƌĞĚ�ƚŽ�
a feature under development. But how do we make sure that we choose the
most reasonable way of processing these different types of work?

In a Kanban system the way of doing it is referred to as “Classes of Service”
which simply mean that we will treat things differently according to their
specific characteristics.

So how do we approach establishing classes of service?

Types of work
Different types of work exist in all software delivery systems and identifying
these is often a good starting point. Individual work types will differ from
system to system but almost all have some element of requirement e.g. User
^ƚŽƌĞƐ�Žƌ�hƐĞ��ĂƐĞƐ�ĂŶĚ�ĚĞĨĞĐƚƐͬďƵŐƐ͘�dŚĞƐĞ�ŵĂǇ�ĂŐĂŝŶ�ďĞ�ĚŝǀŝĚĞĚ�ŝŶƚŽ�ĐĂ-
tegories of functional and non-functional user stories, and blocking, critical
and cosmetic bugs.

Typical types of work include:

ͻ� hƐĞƌ�^ƚŽƌŝĞƐ�;^ŵĂůů͕�DĞĚŝƵŵ͕�>ĂƌŐĞͿ

ͻ� �ƵŐƐ�;�ŽƐŵĞƚŝĐ͕��ƌŝƚŝĐĂů͕��ůŽĐŬĞƌͿ

ͻ� DĂŶƵĂů�ZĞƉŽƌƚƐ

ͻ� dĞǆƚƵĂů��ĚŝƚƐ

ͻ� ^ƵƉƉŽƌƚ�dĂƐŬƐ

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

^ƚĞƉ�ϳ͗�/ĚĞŶƟĨǇ��ůĂƐƐĞƐ�ŽĨ�^ĞƌǀŝĐĞ��| Priming Kanban 61Priming Kanban |�^ƚĞƉ�ϳ͗�/ĚĞŶƟĨǇ��ůĂƐƐĞƐ�ŽĨ�^ĞƌǀŝĐĞϲϬ

Define Classes of Service
Once you have defined your different work types the next step is to consider
how you will handle these different work types in your system. Each way of
handling work types is a Class of Service. The best way to explain this is by
showing an example. In the following we have defined 4 classes of service.

Standard Class
ͻ� �ǆƚƌĂ�ĐŽƐƚ͗�Ϭ�

ͻ� tŽƌŬ�ƚǇƉĞƐ͗��ŽƐŵĞƚŝĐ��ƵŐƐ͕�hƐĞƌ�ƐƚŽƌŝĞƐ�

ͻ� ^ƉĞĐŝĂů�ƚƌĞĂƚŵĞŶƚ͗�EŽŶĞ�

Priority Class
ͻ� �ǆƚƌĂ�ĐŽƐƚ͗�ΨϱϬϬ�

ͻ� tŽƌŬ�dǇƉĞƐ͗��ƌŝƚŝĐĂů�ďƵŐƐ͕�,ŝŐŚ�ƉƌŝŽƌŝƚǇ�ƵƐĞƌ�ƐƚŽƌŝĞƐ͘�

ͻ� ^ƉĞĐŝĂů�ƚƌĞĂƚŵĞŶƚ͗�dĂŬĞƐ�ƉƌŝŽƌŝƚǇ�Ăƚ�ĞĂĐŚ�ƐƚĂŐĞ͘�

Fixed Deadline Class
ͻ� �ǆƚƌĂ�ĐŽƐƚ͗�Ψ�ϬͲϮϬϬϬ�

ͻ� tŽƌŬ�dǇƉĞƐ͗�hƐĞƌ��^ƚŽƌŝĞƐ�

ͻ� ^ƉĞĐŝĂů�ƚƌĞĂƚŵĞŶƚ͗�dĂŬĞƐ�ƉƌŝŽƌŝƚǇ�Ăƚ�ĞĂĐŚ�ƐƚĂŐĞ�ŝĨ�ĚĞĂĚůŝŶĞ�ŝƐ�ĚĞĞŵĞĚ��
 unsafe. Otherwise treated as a standard class. Emergency deploy if
 necessary.

Expedite Class
ͻ� �ǆƚƌĂ�ĐŽƐƚ͗�ΨϯϬϬϬͲϱϬϬϬ�

ͻ� tŽƌŬ�dǇƉĞƐ͗��ůŽĐŬĞƌ��ƵŐ�

ͻ� ^ƉĞĐŝĂů�ƚƌĞĂƚŵĞŶƚ͗��ƌĞĂŬ�t/W�ůŝŵŝƚƐ͕�ƐƚŽƉ�ĞǆŝƐƚŝŶŐ�t/W͕ �ĞŵĞƌŐĞŶĐǇ��
 deploy

Special treatment defines how this class differs from a standard work item
when introduced into our software delivery system. There is always a cost
associated with giving things special treatment. An expedite request will
cause task switching, longer cycle times for remaining work plus extra work
if an extra deploy is needed. Though it will only be a rough guess all classes
except the standard class should have an associated extra cost.

This will naturally cause everybody to evaluate whether it is worth doing it.
Once you start to measure your flow you will be able to make more infor-
med guesses about the cost of special treatment. You can see the effect ex-
pedites has on the cycle time diagram and how an emergency deploy blocks
flow and consumes resources.

Often it is a good idea to set a fixed limit on the number of non-standard
classes in our system. A good rule to consider is: “If everything is an expedite
you have got no expedites at all”.

Visualizing Classes of Service
Classes of Service can be visualized in a number of different ways. Two of the
most popular ways of displaying it is ether using color codes (figure 18) or
swim lanes as shown in figure 19 (or a combination of both).

Martien van Steenbergen

Martien van Steenbergen

^ƚĞƉ�ϳ͗�/ĚĞŶƟĨǇ��ůĂƐƐĞƐ�ŽĨ�^ĞƌǀŝĐĞ��| Priming Kanban 63Priming Kanban |�^ƚĞƉ�ϳ͗�/ĚĞŶƟĨǇ��ůĂƐƐĞƐ�ŽĨ�^ĞƌǀŝĐĞ62

Fig. 18 Classes of Service Visualized Using Color Coding Fig. 19 Classes of Service Visualized Using Swim Lanes

Priming Kanban 65Priming Kanban |�^ƚĞƉ�ϳ͗�/ĚĞŶƟĨǇ��ůĂƐƐĞƐ�ŽĨ�^ĞƌǀŝĐĞ64

Using classes of service gives you the opportunity to handle each item in a
rational way according to its economic impact instead of resolving to panic
and firefighting. It also means we can make different promises to our custo-
mers depending on the class of service we are handling. A topic we will cover
in more detail in step 9.

Step 8
Manage Flow

Martien van Steenbergen

Step 8: Manage Flow | Priming Kanban 67Priming Kanban | Step 8: Manage Flow66

By now you are already showing signs of operating in a highly mature Agile
environment. You have visualized your entire workflow, limited WIP, set op
QA policies and started tracking your flow. The next thing is to learn is to
read your system and take appropriate action when you see an improve-
ment opportunity.

Decision filters

In general, I find it useful to use David Anderson’s Agile and Lean decision
filters to guide our actions.

Agile Decision filter
ͻ� �ƌĞ�ǁĞ�ŵĂŬŝŶŐ�ƉƌŽŐƌĞƐƐ�ǁŝƚŚ�ŝŵƉĞƌĨĞĐƚ�ŝŶĨŽƌŵĂƚŝŽŶ͍

ͻ� �ƌĞ�ǁĞ�ĞŶĐŽƵƌĂŐŝŶŐ�Ă�ŚŝŐŚ�ƚƌƵƐƚ�ĐƵůƚƵƌĞ͍�

ͻ� �ƌĞ�ǁĞ�ƚƌĞĂƚŝŶŐ�t/W�ĂƐ�Ă�ůŝĂďŝůŝƚǇ�ƌĂƚŚĞƌ�ƚŚĂŶ�ĂŶ�ĂƐƐĞƚ͍

Lean Decision filter
ͻ� sĂůƵĞ�ƚƌƵŵƉƐ�ĨůŽǁ

ͻ� &ůŽǁ�ƚƌƵŵƉƐ�ǁĂƐƚĞ�ĞůŝŵŝŶĂƚŝŽŶ�

ͻ� �ůŝŵŝŶĂƚĞ�ǁĂƐƚĞ�ƚŽ�ŝŵƉƌŽǀĞ�ĞĨĨŝĐŝĞŶĐǇ

While the first two points in the Agile decision filter are of a more broad
character, the rest can be used to make better and more informed decisions
when dealing with challenges and difficult decisions. What the Lean decision
filter simply states is that Value is more important than flow, so be careful
when trading value for better cycle time. This is actually a common problem
in Agile projects where business value (and sometimes also quality) is often
sacrificed to make it fit into frozen time-boxed iterations and the focus on
getting things finished rather than matching customer and user demands.
Flow on the other hand is more important than waste elimination so be care-
ful when trading flow for e.g. increased capacity utilization and issue we will
cover in more detail in the next section.

When you have managed to optimize for value and flow you are ready to
look at waste elimination but make sure you first and foremost watch the
product before the people.

With the Agile and Lean decision filters in mind let us try to look at some
core concepts for managing flow in our software delivery system.

Optimize flow not utilization
When you look for improvement opportunities try to avoid thinking in terms
of utilization. Look for opportunities to increase the flow of work items
through your system by asking the following questions:

ͻ� �ƌĞ�ǇŽƵ�ǁŽƌŬŝŶŐ�ǁŝƚŚ�ƚŚĞ�ƌŝŐŚƚ�t/W�ůŝŵŝƚƐ͍�

ͻ� �ĂŶ�ǇŽƵ�ĨŝŶĚ�Ă�ǁĂǇ�ŽĨ�ŵĂŬŝŶŐ�ƚŚĞ�ƐŝǌĞ�ŽĨ�ƵƐĞƌ�ƐƚŽƌŝĞƐ�ƐŵĂůůĞƌ͍ �

ͻ� /Ɛ�ƚŚĞƌĞ�Ă�ǁĂǇ�ƚŽ�ŝĚĞŶƚŝĨǇ�ĨĞĂƚƵƌĞƐ�ƚŚĂƚ�ĞǆƉůŽĚĞ�ŝŶ�ƐŝǌĞ�ďĞĨŽƌĞ�ƚŚĞǇ��
 are introduced into your system and end up blocking capacity for
 long periods of time?

ͻ� �ĂŶ�ǇŽƵ�ůĞǀĞů�ŽƵƚ�ƚŚĞ�ƐŝǌĞ�ŽĨ�ƵƐĞƌ�ƐƚŽƌŝĞƐ�ƚŽ�ĐƌĞĂƚĞ�Ă�ŵŽƌĞ�
 continuous flow?

ͻ� �ĂŶ�ǇŽƵ�ƚƌĂŝŶ�ĨŽƌ�ĨůĞǆŝďŝůŝƚǇ�ƚŽ�ĂǀŽŝĚ�ƐŝůŽƐ�ĂŶĚ�ĞĂƐŝĞƌ�ƌĞůŝĞǀĞ�ďŽƚƚůĞ�
 necks?

ͻ� ,ĂǀĞ�ǇŽƵ�ŐŽƚ�ĂĚĞƋƵĂƚĞ�ďƵĨĨĞƌƐ�ŝŶ�ƉůĂĐĞ�ƚŽ�ŚĂŶĚůĞ�ǀĂƌŝĂƚŝŽŶ͍

ͻ� �ƌĞ�ǇŽƵ�ůŽŽŬŝŶŐ�Ăƚ�ŽƉƚŝŵŝǌŝŶŐ�ƚŚĞ�ǁŚŽůĞ�ĂŶĚ�ŶŽƚ�ŝŶĚŝǀŝĚƵĂů�ƐƚĂŐĞƐ͍

Optimizing flow instead of utilization is close to the very core of Lean. Ame-
rican car manufacturers used to measure and reward individuals according
to how many e.g. car doors they could produce. No matter if those car doors
were just stock piled in a storage building somewhere. This made the indivi-
dual machines work incredibly fast but slowed down the overall production,
since large storages made it hard to locate parts and vast amounts of money
were tied up in inventory. The Toyota production system totally changed the

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 8: Manage Flow | Priming Kanban 69Priming Kanban | Step 8: Manage Flow68

game and showed that by focusing on the end product and matching the
individual machines speed to the ration of cars coming of the production line
(tact time) gave an economic advantage that could not be disputed.

The key is to always think in terms of the flow of the end product and try not
to focus on how you can make an individual or an individual step go faster.
Unfortunately many managers are still much more focused on getting people
to work faster than the quality and flow of the product. Always remember to
watch the product not the people!

Relieve bottlenecks
The Theory of Constraints (TOC) teaches that there will always be one
bottleneck within a given system, limiting production flow. Though TOC
brings a simplified view to flow and bottleneck handling it helps us under-
stand the importance of looking at the system as a whole and focus our
efforts where they bring most value. Using a visual Kanban pull system
bottlenecks are easy to identify as you will see work piling up in upstream
processes and the workflow being drained in downstream processes. The
immediate reaction is often to add more capacity, but often there are other
and more effective ways of handling bottlenecks. People simply do not
scale the same way machines do and the increased capacity, in terms of the
number of people, is often eaten up by the increased coordination overhead
and training. Remember Brooks’s Law “Adding manpower to a late software
project makes it later”

Instead try to look for opportunities to protect the bottleneck from unne-
cessary work. In one project we found the PO team to be the bottleneck.
When analyzing their work it became apparent that much of their time was
consumed by bug investigation and getting back to users who had not recei-
ved the necessary education to work in the system. This task could easily be
undertaken by members of the development team and the result became
that developers would rotate the task of doing this.

The longer term perspective could be to find out how this came to be that
way and either improve the workflows in the system to make them more
intuitive or help users get a better introduction. Removing non-value adding

work is by far the most effective way to relieve a bottleneck.
A third way could be to investigate whether the PO team has blocked work
items consuming capacity. In this case the team should “swarm” on these to
get them fixed as soon as possible.

More ways of dealing with bottlenecks can be found in David J. Anderson’s
book “Kanban”.

Introduce buffers
If you know that there is a bottle neck in your system it is also good to intro-
duce an appropriate buffer in front of it to make sure that the bottleneck is
rarely drained. If, for example, your bottleneck is “Development” a buffer
stage with items “Ready for Development” could be added. Choosing the
right size takes some experience. It is ok for the buffer to be emptied once in
a while but if it happens every 2 weeks you should probably choose a larger
one or evaluate if this is indeed still a bottleneck (could be upstream since
the buffer was drained continuously).

Release planning
Though called “Product Development” most software development systems
(all that I have worked on) live under the “Project” constraints of budget,
time and scope. Thinking only in terms of flow is therefore often a naive ap-
proach since steering group committees expect you to be able to answer the
questions: Are we on time? Are we on budget? Will you deliver the agreed
scope?

To be able to handle this situation in a sensible way you need to do two
things:

First you need to agree that since you cannot fix all three, scope will remain
flexible. Moving a deadline is hard and often results in a vast amount of time
spent reorganizing, coordinating and communicating. Increasing the budget
often means adding more people and as previously mentioned this is seldom
a good tool to reach an upcoming deadline. Adding more people is a strate-

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Step 8: Manage Flow | Priming Kanban 71Priming Kanban | Step 8: Manage FlowϳϬ

gic move for the long term perspective. When increasing budget does not
mean more people, it means making the people you have got work longer
hours. It can be a tool if you have only got one week to go but in all other
situations you should refer to the previous statement by Kent Beck that “if
you have got a problem that cannot be fixed by working overtime for a week
you have a problem that cannot be fixed by working overtime anyway”. Too
often overtime is used as the project manager’s desperate tool to show that
“I am doing something”. He knows it will not fix the problem but uses it to
show some kind of action.

Second, you need to understand flexible scope. When people hear the term
“flexible scope” they often interpret it as a laissez-faire approach to soft-
ware development that really just means “do whatever”. However, working
with flexible scope requires discipline and the ability to track progress accu-
rately to ensure that you are making informed decisions about in a constant-
ly changing environment. This is a key factor in getting the best possible ROI.

You know that your original estimates in terms of complexity, cost, and busi-
ness value were made at the point in time when you had the least amount
of information available. Still deadlines and budget were based on these
assumptions and therefore it is essential to track your progress to make sure
that the project is still feasible. There are many ways of doing it, but since we
have our CFD in place why not use it for this purpose as well? Most project
budgets are done by release so let us look at an example of that (doing it for
multiple release only require minor adjustments). Having a budget, deadline
and initial scope in place, we simply draw our expected velocity on the CFD
and track our progress according to that.

Remember that most project releases follow a S-curve and that deviations,
as a general rule, just indicate that you now have more information available
than you did before and therefore are able to make more informed decisions
(could be to kill the project early).

&ŝŐƵƌĞ�ϮϬ�ƐŚŽǁƐ�ĂŶ�ĞǆĂŵƉůĞ�ŽĨ�Ă�^ͲĐƵǀĞ�ŽŶ�ƚŽƉ�ŽĨ�Ă��&�͘��Ɛ�ǇŽƵ�ĐĂŶ�ƐĞĞ�ƚŚĞ�
ďĂĐŬůŽŐ�ǁĂƐ�ĞǆƉĞĐƚĞĚ�ƚŽ�ŝŶĐƌĞĂƐĞ�ďǇ�ĂƌŽƵŶĚ�ϰϬ�ƉĞƌĐĞŶƚ�;ĨƌŽŵ�ĞǆƉĞƌŝĞŶĐĞͿ͕�
ĨƌŽŵ�Ϯϴ�ƚŽ�ϰϬ�ƉŽŝŶƚƐ͕�ďƵƚ�Ăƚ�ŽŶĞ�ƉŽŝŶƚ�ŚĂĚ�ŐƌŽǁŶ�ƚŽ�ŵŽƌĞ�ƚŚĂŶ�ĚŽƵďůĞ�ƚŚĞ�
size (57). While starting out with a higher than expected velocity, velocity
dropped half way through the release (in this case because of quality pro-
blems).

Experiment
Managing flow also means trying to continuously improve it (covered in
ŵŽƌĞ�ĚĞƚĂŝů�ŝŶ�ƐƚĞƉ�ϭϬͿ͘�DĂŶǇ�ƉƌŽũĞĐƚƐ�ĚŽ�ƚŚŝƐ�ďůŝŶĚĨŽůĚĞĚ�ŝŶ�ƚŚĞ�ƐĞŶƐĞ�ƚŚĂƚ�
they have no means of telling whether the things they changed were a suc-
cess or failure.

Unfortunately most Agile projects fall into this category. Retrospectives are
used to set up experiments but following up (if done at all) only includes
whether it was carried through or not. There will of course always be a high

&ŝŐ͘�ϮϬ�ZĞůĞĂƐĞ�WůĂŶƐ�sŝƐƵĂůŝǌĞĚ�ŽŶ�ƚŚĞ��ƵŵƵůĂƚŝǀĞ�&ůŽǁ��ŝĂŐƌĂŵ

Martien van Steenbergen

Priming Kanban 73Priming Kanban | Step 8: Manage Flow72

level of uncertainty when measuring software development, but more often
than you think the simple metrics introduced in this book provide a clear
visual indication whether it worked or not. As you might recall the Deming
circle includes Plan, Do, Check, Act, because it is necessary for us to be able
to make informed decisions moving forward.

For example you decide to include testers in the development team to do
more upfront testing. You should expect to see a drop in defect rates within
a reasonable timeframe.

Managing flow is all about reading your software system to make the best
possible decisions with the information available in the pursuit of the highest
ROI.

Fig. 21 Relieve Bottlenecks to Improve Flow

Step 9
Establish Service

Level Agreements
(SLA)

Martien van Steenbergen

Step 9: Establish Service Level Agreements (SLA) | Priming Kanban 75Priming Kanban| Step 9: Establish Service Level Agreements (SLA)74

You are now well on your way towards establishing a more effective and
reliable system for software delivery so now it is time to show your results to
the outside world. Having a stable pull system in place and using a simple set
of metrics, to track the systems performance, will make it possible for you
to establish SLAs that you actually meet. This will help you keep the system
in place and avoid the traditional revert to firefighting and chaos once the
Kanban initiative is no longer new and shining. So how does this work?

Establishing the right Service Level
Agreements
While traditional Agile approaches like Scrum put high value on predictabi-
lity in terms of Sprint commitment a Kanban system works on the belief that
you will gain predictability by having a software delivery system that works
in a predictable way. There is a subtle difference between these two ways
of approaching predictability which should not be underestimated. One is
based on a plan driven approach while the other is flow based.

 If you treat your different classes of service the same way every time and
measure the consequence of your improvement efforts, chances are that
cycle time, quality and cost will only improve over time. This gives you the
possibility of sharing this data with you customers. The previously mentio-
ned classes of service might therefore get an SLA looking something like this:

Standard Class
ͻ� ^>�͗
 o Mean: 15 days
� Ž�ϵϬ�ƉĞƌĐĞŶƚ�ǁŝƚŚŝŶ͗�Ϯϭ�ĚĂǇƐ
� Ž��ůů�ǁŝƚŚŝŶ͗�ϯϬ�ĚĂǇƐ

Expedite Class
ͻ� ^>�͗
 o Mean: 2 days
� Ž�ϵϬ�ƉĞƌĐĞŶƚ�ǁŝƚŚŝŶ͗�ϯ�ĚĂǇƐ
 o All within: 4 days

Fixed Deadline Class
ͻ� ^>�͗
 o 98 percent within deadline

Priority Class
ͻ� ^>�͗
 o Mean: 8 days
� Ž�ϵϬ�ƉĞƌĐĞŶƚ�ǁŝƚŚŝŶ͗�ϭϯ�ĚĂǇƐ
 o All within: 18 days

And the key here is that we know these numbers. Not because of qualified
guesses but because we have been tracking our system’s performance and
collected the necessary data. If a demand arises for us to provide even more
detailed information we can easily adjust our metrics accordingly. If for
example it turns out that our standard class work items differ a great deal in
size we might want to add the following details to show our customers the
direct effect.

Standard Class
ͻ� ^>��ϮϬϬͲϯϬϬ�ƐƚŽƌǇ�ƉŽŝŶƚƐ�;>ĂƌŐĞͿ͗
 o Mean: 21 days
� Ž�ϵϬ�ƉĞƌĐĞŶƚ�ǁŝƚŚŝŶ͗�Ϯϱ�ĚĂǇƐ
� Ž��ůů�ǁŝƚŚŝŶ͗�ϯϬ�ĚĂǇƐ

ͻ� ^>��ϭϬϬͲϮϬϬ�ƐƚŽƌǇ�ƉŽŝŶƚƐ�;DĞĚŝƵŵͿ͗
 o Mean: 13 days
� Ž�ϵϬ�ƉĞƌĐĞŶƚ�ǁŝƚŚŝŶ͗�ϭϴ�ĚĂǇƐ
 o All within: 25 days

ͻ� ^>��ϭϬͲϭϬϬ�ƐƚŽƌǇ�ƉŽŝŶƚƐ�;DĞĚŝƵŵͿ͗
� Ž�DĞĂŶ͗�ϭϬ�ĚĂǇƐ
� Ž�ϵϬ�ƉĞƌĐĞŶƚ�ǁŝƚŚŝŶ͗�ϭϰ�ĚĂǇƐ
 o All within: 18 days

For many customers this information is highly valuable in terms prioritization
and experiencing that these numbers hold true, this gives an amount of trust
and collaboration far beyond what most have experienced in prior projects.
To make sure everybody is aware of the current SLAs and Classes of Service
most teams find it useful to post them next to the board as shown in
figure 22.

Martien van Steenbergen

Priming Kanban 77Priming Kanban| Step 9: Establish Service Level Agreements (SLA)76
Fig. 22 Classes of Service Policies Posted Next to the Board

Step 10
Focus on

Continuous
Improvement

^ƚĞƉ�ϭϬ͗�&ŽĐƵƐ�ŽŶ��ŽŶƟŶƵŽƵƐ�/ŵƉƌŽǀĞŵĞŶƚ��| Priming Kanban 79Priming Kanban |��^ƚĞƉ�ϭϬ͗�&ŽĐƵƐ�ŽŶ��ŽŶƟŶƵŽƵƐ�/ŵƉƌŽǀĞŵĞŶƚ78

Keeping a constant cycle of improvement going is arguably the hardest and-
most important element when implementing Kanban. As previously
mentioned, Kanban is a method for driving evolutionary change and the
good news is that having gone through the previous steps will make this
process of continuous improvement a lot easier.

The extreme amount of information radiation created through the visuali-
zation of workflow, explicit policies and SLA’s for each class of service have
proved to foster an ongoing dialogue about improvement opportunities far
beyond that seen in traditional software projects. Every day you are forced
to make explicit decisions about how best to handle work in your system.
While being a good base for continuous improvement; this fact also seems
to provoke a deeper understanding of Agile and Lean concepts for those
working in a Kanban system and therefore less likely to revert to former
processes and anti patterns.

Since we collect real data, Kanban also gives us the opportunity to perform
and validate our experiments in a more scientific way than traditional Agile
projects. Initiatives to improve cycle time should result in an actual measu-
rable effect. This makes continuous improvement in a Kanban system much
more reliable and since we can see and measure the effect of our change
initiatives we are much more likely to keep raising the bar.

For some people, working with Kanban is the first time they start to see
the software delivery system as a whole. This gives an immense insight
into other people’s work, how they depend on you and vice versa. This also
means that opportunities for optimizing more than just individual silos arise
from the ongoing discussions between the involved groups of people. If you
happen to see a tester, PO and a developer discussing flow improvements
next to the Kanban board you can be certain that you are well under way.

While spontaneous quality circles (the Lean term for these ongoing discussi-
ons) are excellent vehicles for continuous improvement many Kanban teams
still benefit from the use of a regular cadence of retrospectives (kaizen
events in Lean terminology). Retrospectives give the team a chance to gain
perspective and see their work from a distance. This sometimes leads to
suggestions for larger structural changes beyond Kaizen which is known as
Kaikaku (dramatic change) in Lean. A combination of ongoing quality circles
and a cadence of retrospectives seem to be a powerful cocktail to drive
improvement.

Good luck on
your journey

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Martien van Steenbergen

Priming Kanban 81Priming KanbanϴϬ

I hope these past chapters have given you useful insights and inspired you to
move forward on your Agile journey and use Kanban on real projects in your
company. I would love to get your feedback from reading this and for you to
share stories about how it might have helped you achieve better ROI for you
and your customers.

All suggestions to a possible second edition are very welcome. You can find
me here:

Jesper Boeg

 Mail: jbo@trifork.com
 Twitter: J_Boeg
 Blog: http://triforkagile.blogspot.com/

Trifork Agile Excellence

 Mail: triforkagile@trifork.com
 Twitter: triforkagile
 Website: www.trifork.com

If you think your company could benefit from Kanban training or coaching
we would be more than happy to discuss it with you. Trifork has a broad
range of Agile offerings including coaching, onsite training and certificati-
ons in Kanban, Scrum, Lean, Personal effectiveness and Agile development
practices.

If you do get started with Kanban I will encourage you to join the kanban ya-
hoo groups “kanbandev” and “kanbanops” and participate in discussions and
knowledge sharing about applying Kanban in practice. Since this only serves
as a short intro I would also suggest you broaden your knowledge through
training and reading the following books:

ͻ� <ĂŶďĂŶ͕��ĂǀŝĚ�:͘��ŶĚĞƌƐŽŶ͕�ϮϬϭϬ

ͻ� dŚĞ�WƌŝŶĐŝƉůĞƐ�ŽĨ�WƌŽĚƵĐƚ��ĞǀĞůŽƉŵĞŶƚ�&ůŽǁ͗�^ĞĐŽŶĚ�'ĞŶĞƌĂƚŝŽŶ��
� >ĞĂŶ�WƌŽĚƵĐƚ��ĞǀĞůŽƉŵĞŶƚ͕��ŽŶĂůĚ�'͘�ZĞŝŶĞƌƚƐĞŶ͕�ϮϬϬϵ

ͻ� dŚĞ��ůĞŐĂŶƚ�^ŽůƵƚŝŽŶ͗�dŽǇŽƚĂ͛Ɛ�&ŽƌŵƵůĂ�ĨŽƌ�DĂƐƚĞƌŝŶŐ�/ŶŶŽǀĂƚŝŽŶ͕��
� DĂƚƚŚĞǁ�ŵĂǇ͕�ϮϬϬϴ

ͻ� >ĞĂŶ�dŚŝŶŬŝŶŐ͗��ĂŶŝƐŚ�tĂƐƚĞ�ĂŶĚ��ƌĞĂƐƚĞ�tĞĂůƚŚ�ŝŶ�zŽƵƌ�
� �ŽƌƉŽƌĂƚŝŽŶ͕�:ĂŵĞƐ�W͘ �tŽŵĂĐŬ�ĂŶĚ��ĂŶŝĞů�d͘�:ŽŶĞƐ͕�ϮϬϬϯ

ͻ� dŚĞ�dŽǇŽƚĂ�ǁĂǇ͗�ϭϰ�DĂŶĂŐĞŵĞŶƚ�WƌŝŶĐŝƉůĞƐ�ĨƌŽŵ�ƚŚĞ�tŽƌůĚ͛Ɛ�
� 'ƌĞĂƚĞƐƚ�DĂŶƵĨĂĐƚƵƌĞƌ͕ �:ĞĨĨƌĞǇ�>ŝŬĞƌ͕ �ϮϬϬϰ

Best of luck on your journey and please consider making us part of it.

